КСЕНОКРИСТЫ И МЕГАКРИСТЫ ЩЕЛОЧНОЙ oЛИВИН-БАЗАЛЬТ-БАЗАНИТ-НЕФЕЛИНИТОВОЙ АССОЦИАЦИИ МАХТЕШ РАМОНА (ИЗРАИЛЬ), ИХ ПЕТРОХИМИЧЕСКИЕ ВЗАИМОДЕЙСТВИЯ С ВЫНОСЯЩИМИ РАСПЛАВАМИ И КРИСТАЛЛОГРАФИЧЕСКИЕ ПРЕОБРАЗОВАНИЯ

Зиновий Алексеевич Юдалевич, Евгений Вапник

Аннотация


Объектом предлагаемого исследования являются ксенокристы и мегаксенокристы в породах раннемеловой оливин-базальт-базанит-нефелинитовой ассоциации эрозионной котловины Махтеш Рамон (Негев, Израиль). В ней широко развиты ксенолиты разной степени глубинности: мантийные, нижне- и верхнекоровые. Ксенолиты мантии представлены перидотитами, оливиновыми клинопироксенитами и клинопироксенитами, оливиновыми вебстеритами, вебстеритами и их амфибол-содержащими разностями; ксенолиты нижней коры - мафическими гранулитами (метагабброиды и плагиоклазиты), верхней коры - позднепротерозойскими метатуфами. Ксенокристы и мегакристы являются отщепленными фрагментами ксенолитов. Их общей петрографической особенностью является проработка вмещающим расплавом и связанные с ней геохимические и структурные преобразования. В основном ксенокристы представлены когерентным рядом минералов (оливин, клинопироксен, амфибол, нефелин, плагиоклаз, анортоклаз, апатит, магнетит, шпинель) и только ксенокристы кварца и ортопироксена не совместимы с недосыщенными SiO2 вмещающими породами. Главными причинами, инициирующими взаимодействие магматический расплав-ксенокрист, являются быстрая декомпрессия, метаморфизм и метасоматоз. Метаморфизм соответствует высокотемпературным фациям контактового метаморфизма, иногда достигая стадии плавления. Mетасоматоз ориентирован на выравнивание составов с одноименными минералами вмещающего расплава. К числу важнейших критериев, способствующих отличию ксенокристов от фенокристов, относятся частичное плавление, твердофазный распад, рекристаллизация первичных (дозахватных) структур, перекристаллизация и само­огранка изначально ксеноморфных зерен в кристаллографически правильные формы, бимодальность состава, совмещающего минералого-геохимические признаки ксеногенного и новообразованного вещества.

Ключевые слова


плавление, твердофазный распад, рекристаллизация, самоогранка, ксенокристы, мегакристы, ксенолиты, магматические породы, Мактеш Рамон, Израиль, melting, solid-state decomposition, recrystallization, self-faceting, xenocrysts, megacrysts, xenoliths, magmatic rocks, Makhtesh Ramon, Israel

Полный текст:

PDF

Литература


Агафонов Л.В., Кутолин В.А., Леснов Ф.П. (1978) Воздействие базальтовой магмы на ксенолиты ультраосновных пород и относительная устойчивость минералов в базальтовом расплаве. Материалы по петрологии и минералогии ультраосновных и основных пород. Новосибирск: Наука, 67-84.

Гегузин Я.Е. (1987) Живой кристалл. M.: Наука, 192 с.

Горяинов П.М., Иванюк Е.Г.(2010) Энергетическая перколяция - причина самоорганизации литосферных ансамблей.“Проблемы геологии полезных ископаемых и металлогении”. Междунар. конф. М., 205.

Кутолин В.А., Агафонов Л.В., Чепуров А.И. (1976) Относительная устойчивость оливина, пироксенов и граната в базальтовой магме и состав верхней мантии. Докл. АН СССР, 321, 1218-1221.

Миясиро А. (1976) Метаморфизм и метаморфические пояса. M.: Мир, 535с.

Островский Н.Ю., Мишина Г.П., Повилайтис В.М. (1959)Р-Т проекция системы кремнезем-вода. Докл. АН СССР, 126, 645-646.

Ферштатер Г.Б., Юдалевич З.А., Хиллер В.В. (2016) Ксенолиты в щелочных базальтоидах Махтеш Рамона (Негев, Израиль) как индикаторы мантийного метасоматоза и магмообразования. Литосфера, (3), 5-26.

Чепуров А.И., Жимулев Е.И., Агафонов Л.В., Сонин В.М., Чепуров А.А., Томиленко А.А. (2013) Устойчивость ромбического и моноклинного пироксенов, оливина и граната в кимберлитовой магме. Геология и геофизика, 54, 533-544.

Шарыгин В.В., Котай К., Сабо Ч., Тимина Т.Ю., Тёрёк К., Вапник Е., Кузьмин Д.Е. (2011) Рёнит в щелочных базальтах: включения расплава в фенокристах оливина. Геология и геофизика, 52,1695-1717.

Шубников А.В. (1935) Как растут кристаллы. М.; Л.: Изд-во АН СССР, 174 с.

Юдалевич З.А., Ферштатер Г.Б., Эйяль М.(2014) Магматизм Махтеш Рамона: геология, геохимия, петрогенезис (природоохранная зона Хар Ха-Негев, Израиль). Литосфера, (3), 70-92.

Arai S., Abe N. (1995) Reaction of orthopyroxene in peridotite xenoliths with alkali basalt melt and its implication for genesis of alpine-type chromitite. Amer. Mineral., 80, 1041-1047.

Arzilli F., Carroll M.R. (2013) Crystallization kinetic of alkali feldspars in cooling and decompression induced crystallization experiments in trachytic melt. Contrib. Mineral. Petrol., 166, 1011-1027.

Baer G., Heimann A., Eshet Y., Weinberger R., Musset A., Sherwood G.(1995) The Saharonim Basalt: A Late Triassic - Early Jurassic intrusion in south-eastern Makhtesh Ramon. Isr. J Earth Sci., 44, 1-10.

Ban M., Witt-Eickschen G., Klein M., Seck H. (2004) The origin of glasses in hydrous mantle xenoliths from the West Eifel, Germany: incongruent break down of amphibole. Contrib. Mineral. Petrol., 148, 511-523.

Barns S., Roeder P. (2001) The range of spinel composition in Terrestrial mafic and ultramafic rocks. J. Petrol., 42, 2279-2302.

Bédard J.H. (1988) Comparative amphibole chemistry of the Monteregian and White Mountain alkaline suits, and the origin of amphibole megacrysts in alkali basalts and lamprophyres. Miner. Mag., 52, 91-103.

Bentor Y. (1952) Magmatic intrusion and lava sheets in the Raman area of the Negev (southern Israel). Geol. Mag., 89, 129-140.

Binns R., Duggan M., Wilkinson J. (1970) High pressure megacryst in alkaline lavas from northeastern South Wales with chemical analyses. Amer. J. Sci., 269, 132-168.

Boivin P. (1980) Données experimental préliminaries sur la stabilité de la rhönite à 1 atmosphère. Application aux gisements naturels. Bull. Minéral.,103, 491-502.

Bonen D., Perlman I., Yelin J. (1980) The evolution of trace element concentrations in basic rocks from Israel and their petrogenesis. Contrib. Mineral. Petrol., 72, 397-414.

Brearley M., Scarfe C.M. (1986) Dissolution rates of upper mantle minerals in alkali basalt melt at high pessure: an experimental study and implications for ultramafic xenoliths survival. J. Petrol., 27, 1157-1182.

Carpenter R., Edgar A., Thibault Y. (2002) Origin of spongy textures in clinopyroxenes and spinel from mantle xenoliths, Hessian Depression, Germany. Mineral. Petrol., 74, 149-162.

Dal Negro A., Manoli S., Secco L., Piccirillo E.M. (1989) Megacrystic clinopyroxenes from Victoria (Australia): crystal chemical comparisons of pyroxenes from high and low pressure regimes. Eur. J. Mineral., 1, 105-121.

Dobosi G., Downes H., Emdey-Istin A., Jenner J. (2003) Origin of megacrysts and pyroxenite xenoliths from the Pliocene alkali basalts of the Pannonian basin (Hungary). J. Mineral. Geochem., 178, 217-237.

Ehrenberg S. (1982) Petrogenesis of garnet lherzolite and megacrystalline nodules from the Thumb, Navajo volcanic field. J. Petrol., 23, 507-547.

Evans S., Nash W. (1979) Petrogenesis of xenoliths-bearing basalts from southeastern Arizona. Amer. Mineral., 64, 249-267.

Eyal M., Becker A., Samoilov V. (1996) Mt. Arod - an Early Cretaceous basanitic volcano with a fossil lava lake. Israel J. Earth Sci., 45, 31-38.

Fershtater G., Yudalevich Z. (2017) Mantle metasomatism and magma formation in continental lithosphere: data on xenoliths in alkali basalts from Makhtesh Ramon, Negev desert, Israel. Petrology, 25, 181-205.

Francis D. (1991) Some implications of xenoliths glasses for the mantle sources of alkaline mafic magmas. Contrib. Mineral. Petrol., 108, 175-180.

Garfunkel Z., Katz A. (1967) New magmatic features in Makhtesh Ramon, southern Israel. Geol. Mag., 104, 608-629.

Grapes R.H., Keller J.(2010) Fe2+ - dominant rhönite in undersaturatedalkaline basaltic rocks, Kaisershuhl volcanic complex, Upper Rhine Graben, SW Germany. Eur. J. Mineral., 22, 285-292.

Irving A.J., Frey F.A. (1984) Trace element abundance in megacrysts and their host basalts: constraints on partition coefficients and megacrysts genesis. Geochim. Cosmochim. Acta, 48, 1201-1221.

Johnston A.D., Stout J.H. (1984) Compositional variation of naturally occurring rhönite. Amer. Mineral., 70, 1211-1216.

Kennedy D., Wasserburg G., Heard H., Newton R. (1962) The upper three-phase region in the system SiO2-H2O. Amer. J. Sci., 260, 501-521.

Kogarko L., Kurat G., Ntaflos T. (2001) Carbonate metasomatism of the oceanic mantle beneath Fernando de Noronha Island, Brazil. Contrib. Mineral. Petrol., 140, 577-587.

Kowabata H., Hanui T., Chang Q., Kimura J-I., Nichols A.R.L., Tatsumi Y. (2011) The petrology and geochemistry of Saint Helena alkali basalt: evaluation of the oceanic crust-recycling model of HIMU OIB. J. Petrol., 52, 791-838.

Kuo L.C., KirpatrickR.J. (1985) Dissolution of mafic minerals and its implications for the ascent velocities of peridotite-bearing basaltic magmas. J. Geol., 93, 691-700.

Kyle P., Price R. (1975)Occurrences of rhönite in alkali lavas of the McMurdo volcanic group, Antarctica, and Dunedin volcano, New Zealand. Amer. Mineral., 60, 722-728.

Lang B., Steinitz G.(1989) K-Ar dating of Mesozoic magmatic rocks in Israel: A review. Israel J. Earth Sci., 38, 89-103.

Lopez M., Pompilio M., Rotolo S.R. (2006) Petrology of some amphibole-bearing volcanics of pre-Ellitico period (102-80 ka), Mt. Etna. Periodico di Mineralogia, 75, 151-166.

Messiga B., Bettini E. (1990) Reaction behavior during kelyphite and symplectite formation: a case study of mafic granulites and eclogites from the Bohemian Massif. Eur. J. Mineral., 2, 125-144.

Miller C., Zanetti A., Thoni M., Konzett J., Klotzli U. (2012) Mafic and silica-rich glasses in mantle xenoliths from Wau-en-Namus, Libya: textural and geochemical evidence for peridotite-melt reactions. Lithos, 128-131, 11-26.

Nelson S.T., Montana A., 1992. Sieve-textures plagioclase in volcanic rocks produced by rapid decompression. Amer. Mineral., 77, 1242-1249.

Nielson J., Nakata J. (1994) Mantle origin and flow sorting of megacryst - xenolith inclusion in mafic dikes of Black Canyon, Arizona. US Geol. Surv. Prof. Paper, 1541, 41 p.

Rankenburg K., Lassiter J., Brey G.(2004) Origin of megacrysts in volcanic rocks of the Cameron vole: chain -constrains on magma genesis and crustal contamination. Contrib. Mineral. Petrol., 147, 129-144.

Ribbe P.(1960) An X-ray and optical investigation of the peristerite plagioclases. Amer. Mineral., 45, 626-644.

Righter K., Carmichael I.S.E.(1993) Mega-xenocrysts in olivine basalts: fragments of disrupted mantle assemblages. Amer. Mineral., 78, 1230-1245.

Ringwood A.E. (1975) Origin and petrology of the Earth’s mantle. McGraw-Hill, 618 p.

Samoilov V., Vapnik Ye. (2007) Fractional melting - the determining factor in the origin of thephrite-basanite-nephelinite rock suite: evidence from western Makhtesh Ramon, Israel. N. Jb. Mineral.Abh., 184(2), 181-195.

Shaw C.S.J. (1999) Dissolution of clinopyroxene in basanite magma between 0.4 and 0.2 GPa: further implications for the origin Si-rich alkaline glass inclusions in mantle xenoliths. Contrib. Mineral. Petrol., 135, 114-132.

Shaw S.J.S., Eyzaguirre J. (2000) Origin of megacrysts in the mafic alkaline lavas of the West Eifel volcanic field, Germany. Lithos, 50, 75-95.

Shaw S.J.S., Thibault Y., Edgar A.D., Lloyd F.E. (1998) Mechanism of orthopyroxene dissolution in silica-undersaturated melts at 1 atmosphere and implications for the origin of silica-rich glass in mantle xenoliths. Contrib. Mineral. Petrol., 132, 354-370.

Shulze D. (1987) Megacrysts from alkali volcanic rocks. Mantle xenoliths (ed. P.H. Nixon), 443-451.

Snelling A.A. (2007) Rapid ascent of basalts magmas. Acts and Facts, 36, 10.

Stein M., Katz A. (1989) Composition of the subcontinental lithosphere beneath Israel:Inferences from peridotitic xenoliths. Israel J. Earth Sci., 38, 75-87.

Tsuchiyama A. (1985) Dissolution kinetics of plagioclase in the melt of the system diopside-albite-anorthite, and origin of crusty plagioclase in andesites. Contrib. Mineral. Petrol., 89, 1-19.

Tsuchiyama A. (1986) Melting and dissolution kinetics: application to partial melting and dissolution of xenoliths. J. Geophys. Res., 91(B9), 9395-9406.

Upton B.G.J., Finch A.A., Słaby E. (2009) Megacrysts and salic xenoliths in Scottish alkali basalt derivatives of deep crustal and small-melt fractions from upper mantle. Miner. Mag., 73, 943-956.

Vapnik Y. (2005) Melt and fluid inclusions and thermobarometry of mantle xenoliths in Makhtesh Ramon, Israel. Israel J. Earth Sci., 54, 15-28.

Vapnik Y., Sharygin V., Samoilov V., Yudalevich Z. (2007) The petrogenesis of basic and ultrabasic alkaline rocks of western Makhtesh Ramon, Israel: melt and fluid inclusion study. Inter. J. Earth Sci., 96, 663-684.

Villaseca C., Ancochea E., Orejana D., Jeffries T.E. (2010) Composition and evolution of the lithospheric mantle in Central Spain: inferences from peridotite xenoliths from the Cenozoic Calatrava volcanic field. Petrological evolution of the European lithospheric mantle (Eds: M. Coltorti, H. Downes, M. Grégoire, S.Y. O’Reilly). Geol. Soc., London, Spec. Publ., 337, 125-151.

Wang Y., Han B., Griffin W.L., Zhang L., Shu G. (2012) Post-entrainment mineral - magma interaction in mantle xenoliths from Inner Mongolia, Western North China craton. J. Earth Sci., 23, 54-76.

Wilkinson J.F.G. (1975) Ultramafic inclusions and high pressure megacrysts from a nephelinite sill Nandewar Mountains, New Wales, and their bearing on the origin of certain ultramafic inclusions in alkali volcanic rocks. Contrib. Mineral. Petrol., 51, 235-262.


Ссылки

  • Ссылки не определены.


Рейтинг@Mail.ru