Preview

Литосфера

Расширенный поиск

Использование состава циркона и апатита при прогнозировании Cu-Mo-Au-порфирового оруденения в Пекинском и Тессемском массивах Таймыро-Североземельской складчатой области

https://doi.org/10.24930/2500-302X-2024-24-3-547-565

Аннотация

Объект исследования. Тессемский массив гранитоидов расположен в Северо-Таймырской тектонической зоне в окружении кембрийских пород. Пекинский массив гранитоидов находится в пределах Центрально-Таймырский зоны в окружении метаморфизованных протерозойских пород. Цель. Разработка методики использования состава акцессорных минералов гранитоидов для определения перспектив развития связанного с ними Cu-Mo-Auпорфирового оруденения на примере Пекинского и Тессемского массивов п-ова Таймыр. Материалы и методы исследования. Изучены акцессорные цирконы и апатиты из двух проб гранитоидов Пекинского массива (П1, П2) и двух проб гранитоидов Тессемского массива (Т2, Т3). Состав минералов исследован с помощью EPMA Cameca SX100. Содержание элементов в минералах определено методом LA-ICP-MS при помощи NexION 300S с приставкой NWR 213. Результаты. Составы пород обоих массивов попадают в поля адакитов на классификационных диаграммах. Бóльшая часть цирконов из Пекинского и Тессемского массивов сформировались при температуре <738°С в достаточно окисленной магме с ΔFMQ = 0.6–2.6, что является благоприятным признаком для выявления Cu-Mo-Au-порфирового оруденения. Цирконы характеризуются повышенными отношениями (Eu/Eu*)/Y и  (Ce/Nd)n/Y, что также является благоприятным, хотя и не очень надежным признаком для выявления порфирового оруденения. Значения отношений Eu/Eu* и Sr/Y в апатитах из Тессемского массива выше, чем в апатитах из Пекинского массива. Оценки фугитивности кислорода (logfO2), рассчитанные по Mn в апатитах для четырех проб, совпадают в пределах погрешности. Выводы. Рассмотрены особенности использования состава акцессорных минералов (циркон, апатит) для определения перспективности развития связанного с гранитоидами Cu-Mo-Au-порфирового оруденения. На основе анализа состава циркона и апатита показано, что данные минералы-индикаторы могут использоваться для ранжирования массивов гранитоидов по степени их потенциальной рудоносности. На примере изучения двух гранитных интрузий п-ова Таймыр удалось показать, что Тессемский массив является более перспективным для обнаружения связанного Cu-Mo-Au-порфирового оруденения, чем Пекинский массив.

Об авторах

C. В. Берзин
Санкт-Петербургский государственный университет
Россия

199034, г. Санкт-Петербург, Университетская наб., 7/9



С. В. Петров
Санкт-Петербургский государственный университет
Россия

199034, г. Санкт-Петербург, Университетская наб., 7/9



Д. Л. Конопелько
Санкт-Петербургский государственный университет
Россия

199034, г. Санкт-Петербург, Университетская наб., 7/9



М. Ю. Курапов
Санкт-Петербургский государственный университет
Россия

199034, г. Санкт-Петербург, Университетская наб., 7/9



Т. А. Головина
АО “Полиметалл УК”
Россия

198216, г. Санкт-Петербург, пр-т Народного Ополчения, 2, лит. А



Н. Я. Черненко
ООО “Полярная экспедиционная компания”
Россия

660043, г. Красноярск, ул. Дмитрия Мартынова, 43 



В. С. Червяковский
Институт геологии и геохимии им. академика А.Н. Заварицкого УрО РАН
Россия

620110, г. Екатеринбург, ул. Академика Вонсовского, 15



Список литературы

1. Верниковский В.А. (1996) Геодинамическая эволюция Таймырской складчатой области. Новосибирск: СО РАН, НИЦ ОИГГМ, 202 с.

2. Верниковский В.А. Сальникова Е.Б., Котов А.Б., Пономарчук В.А., Ковач В.П., Травин А.В., Яковлева С.З., Березная Н.Г. (1998) Возраст постколлизионных гранитоидов Северного Таймыра: U-Pb, Sm-Nd, Rb-Sr- и Ar-Ar-данные. Докл. АН, 363(3), 375-378.

3. Зайцева М.В., Пупышев А.А., Щапова Ю.В., Вотяков С.Л. (2016) U-Pb-датирование цирконов с помощью квадрупольного масс-спектрометра с индуктивно связанной плазмой NexION300S и приставки для лазерной абляции NWR213. Аналитика и контроль, 20(4), 294-306. http://dx.doi.org/10.15826/analitika.2016.20.4.006

4. Зоненшайн Л.П. (1990) Тектоника литосферных плит территории СССР. Ч. II. М.: Недра, 344 с.

5. Качурина Н.В., Макарьев А.А., Макарьева Е.М., Гавриш А.В., Орлов В.В., Дымов В.А. (2013) Государственная геологическая карта Российской Федерации. М-б 1 : 1 000 000 (третье поколение). Лист Т-45- 48 – Мыс Челюскин. Объяснит. записка. СПб.: Картфабрика ВСЕГЕИ, 562 с.

6. Курапов М.Ю., Ершова В.Б., Макарьев А.А., Макарьева Е.М., Худолей А.К., Лучицкая М.В., Прокопьев А.В. (2018) Каменноугольный магматизм Северного Таймыра: результаты изотопно-геохимических исследований и геодинамические следствия. Геотектоника, (2), 76-90.

7. Погребицкий Ю.Э. (1971) Палеотектонический анализ Таймырской складчатой системы. М.: Недра, 284 с.

8. Проскурнин В.Ф., Листков А.Г., Гавриш А.В., Ванюнин Н.В. (2002) Металлогенический анализ и перспективы промышленного освоения Таймыро-Североземельской золотоносной провинции. Недра Таймыра. Вып. 5. СПб.: ВСЕГЕИ, 10-42.

9. Проскурнин В.Ф., Петров О.В., Романов А.П., Курбатов И.И., Гавриш А.В., Проскурнина М.А. (2021) Центрально-Арктический золотосодержащий медномолибден-порфировый пояс. Региональная геология и металлогения, 85, 31-49.

10. Проскурнина М.А., Проскурнин В.Ф., Ремизов Д.Н., Ларионов А.Н. (2019) Кольцевые интрузивы Беспамятнинского ареала: проявления шошонит-латитового магматизма на Северном Таймыре. Регион. геол. и металлогения, 79, 5-22.

11. Урванцев Н.Н. (1949) Таймырская складчатая зона. Бюлл. Норильского комбината, 4-12.

12. Augland L.E., Ryabov V.V., Vernikovsky V.A., Planke S., Polozov A.G., Callegaro S., Jerram D.A., Svensen H.H. (2019) The main pulse of the Siberian Traps expanded in size and composition. Sci. Rep., 9(1), 1-12. https://doi.org/10.1038/s41598-019-54023-2

13. Ballard J.R., Palin J.M., Campbell I.H. (2002) Relative oxidation states of magmas inferred from Ce(IV)/Ce(III) in zircon: Application to porphyry copper deposits of northern Chile. Contrib. Mineral. Petrol., 144, 347-364

14. Belousova E.A., Griffin W.L., O’Reilly S.Y., Fisher N.I. (2002) Apatite as an indicator mineral for mineral exploration: Trace-element compositions and their relationship to host rock type. J. Geochem. Explor., 76(1), 45-69. https://doi.org/10.1016/S0375-6742(02)00204-2

15. Belousova E.A., Griffin W.L., O’Reilly S.Y., Fisher N.I. (2002) Igneous zircon: Trace element composition as an indicator of source rock type. Contrib. Mineral. Petrol., 143, 602-622. https://doi.org/10.1007/s00410-002-0364-7

16. Bromiley G.D. (2021) Do concentrations of Mn, Eu and Ce in apatite reliably record oxygen fugacity in magmas? Lithos, 384-385, 105900. https://doi.org/10.1016/j.lithos.2020.105900

17. Cao M., Li G., Qin K., Seitmuratova E.Y., Liu Y. (2012) Major and trace element characteristics of apatites in granitoids from C. Kazakhstan: Implications for petrogenesis and mineralization. Resour. Geol., 62, 63-83.

18. Cassini V., Moyen J.-F., Cellier G., de Freitas B., Juliani C., Laurent O. (2022) Towards the fertility trend: Unraveling the economic potential of igneous suites through whole-rock and zircon geochemistry (example from the Tapajós mineral Province, Northern Brazil). Ore Geol. Rev., 142, 104643.

19. Cooke D.R., Agnew P., Hollings P., Baker M., Chang Z., Wilkinson J.J., White N.C., Zhang L., Thompson J., Gemmell J.B., Fox N., Chen H., Wilkinson C.C. (2017) Porphyry Indicator Minerals (PIMS) and Porphyry Vectoring and Fertility Tools (PVFTS) – Indicators of Mineralization Styles and Recorders of Hypogene Geochemical Dispersion Halos. Proceedings of Exploration 17: Sixth Decennial International Conference on Mineral Exploration, 457-470.

20. Ershova V.B., Anfinson O., Prokopiev A.V., Khudoley A.K., Stockli D.F., Faleide J.I., Gaina C., Malyshev N.A. (2018) Detrital zircon (U-Th)/He ages from Paleozoic strata of the Severnaya Zemlya Archipelago: Deciphering multiple episodes of Paleozoic tectonic evolution within the Russian High Arctic. J. Geodynam., 119, 210-220. https://doi.org/10.1016/j.jog.2018.02.007

21. Ershova V.B., Prokopiev A.V., Khudoley A.K., Andersen T., Kullerud K., Kolchanov D.A. (2020) U–Pb age and Hf isotope geochemistry of detrital zircons from cambrian sandstones of the severnaya Zemlya archipelago and Northern Taimyr (Russian high arctic). Minerals, 10(1), 36. https://doi.org/10.3390/min10010036

22. Ershova V.B., Prokopiev A.V., Khudoley A.K., Proskurnin V.F., Andersen T., Kullerud K., Stepunina M.A., Kolchanov D.A. (2017) New U-Pb isotopic data for detrital zircons from metasedimentary sequences of northwestern Taimyr. Dokl. Earth Sci., 474, 613-616. https://doi.org/10.1134/S1028334X17060022

23. Ershova V.B., Prokopiev A.V., Khudoley A.K., Sobolev N.N., Petrov E.O. (2015a) Detrital zircon ages and provenance of the Upper Paleozoic successions of Kotel’ny Island (New Siberian Islands archipelago). Lithosphere, 7(1), 40-45. https://doi.org/10.1130/L387.1

24. Ershova V.B., Prokopiev A.V., Nikishin V.A., Khudoley A.K., Malyshev N.A., Nikishin A.M. (2015b) New data on Upper Carboniferous-Lower Permian deposits of Bol’shevik Island, Severnaya Zemlya Archipelago. Polar Res., 34, 1-8. https://doi.org/10.3402/polar.v34.24558

25. Harlov D.E. (2015) Apatite: A fingerprint for metasomatic processes. Elements, 11(3), 171-176. https://doi.org/10.2113/gselements.11.3.171

26. Hedenquist J.W. (2014) Variable Characteristics of Ore Deposits in the Epithermal Environment: Causes, and Exploration Implications. Acta Geol. Sinica, 88(s2), 736-737.

27. Hoskin P.W.O. (2005) Trace-element composition of hydrothermal zircon and the alteration of hadean zircon from the Jack Hills, Australia. Geochim. Cosmochim. Acta, 69, 637-648.

28. Hoskin P.W.O., Schaltegger U. (2003) The composi tion of zircon and igneous and metamorphic petrogenesis. Rev. Mineral. Geochem., 53(1), 27-62. https://doi.org/10.2113/0530027

29. Imai A. (2004) Variation of Cl and SO3 contents of microphenocrystic apatite in intermediate to silicic igneous rocks of Cenozoic Japanese island arcs: Implications for porphyry Cumetallogenesis in theWestern Pacific Island arcs. Resour. Geol., 54, 357-372.

30. Khudoley A.K., Verzhbitsky V.E., Zastrozhnov D.A., O’Sullivan P., Ershova V.B., Proskurnin V.F., Tuchkova M.I., Rogov M.A., Kyser T.K., Malyshev S.V., Schneider G.V. (2018) Late Paleozoic – Mesozoic tectonic evolution of the Eastern Taimyr-Severnaya Zemlya Fold and Thrust Belt and adjoining Yenisey-Khatanga Depression. J. Geodynam., 119, 221-241. https://doi.org/10.1016/j.jog.2018.02.002

31. Kong D.X. (2022) Tracing the effects of fO2, pressure and H2O on the ore-forming magmas: Perspective from zircon REE composition. J. Asian Earth Sci., 237, 105354. https://doi.org/10.1016/j.jseaes.2022.105354

32. Konopelko D., Seltmann R., Dolgopolova A., Safonova I., Glorie S., De Grave J., Sun M. (2021) Adakite-like granitoids of Songkultau: A relic of juvenile Cambrian arc in Kyrgyz Tien Shan. Geosci. Front., 12, 147-160. https://doi.org/10.1016/j.gsf.2020.08.006

33. Kurapov M.Y., Ershova V.B., Khudoley A.K., Luchitskaya M.V., Makariev A.A., Makarieva E.M., Vishnevskaya I.A. (2020а) Late Palaeozoic magmatism of Northern Taimyr: New insights into the tectonic evolution of the Russian High Arctic. Int. Geol. Rev., (9), 1-23. https://doi.org/10.1080/00206814.2020.1818300

34. Kurapov M.Y., Ershova V.B., Khudoley A.K., Makariev A.A., Makarieva E.M. (2020b) The first evidence of Late Ordovician magmatism of the October Revolution Island (Severnaya Zemlya archipelago, Russian High Arctic): Geochronology, geochemistry and geodynamic settings. Norweg. J. Geol., 100(1). https://doi.org/10.17850/njg100-3-4

35. Loader M.A., Nathwani Ch.L., Wilkinson J.J., Armstrong R.N. (2022) Controls on the magnitude of Ce anomalies in zircon. Geochim. Cosmochim. Acta, 328, 242-257. https://doi.org/10.1016/j.gca.2022.03.024

36. Loader M.A., Wilkinson J.J., Armstrong R.N. (2017) The effect of titanite crystallisation on Eu and Ce anomalies in zircon and its implications for the assessment of porphyry Cu deposit fertility. Earth Planet. Sci. Lett., 472, 107- 119. https://doi.org/10.1016/j.epsl.2017.05.010

37. Lorenz H., Gee D.G., Whitehouse M.J. (2007) New geochronological data on Palaeozoic igneous activity and deformation in the Severnaya Zemlya Archipelago, Russia, and implications for the development of the Eurasian Arctic margin. Geol. Mag., 144(1), 105-125. https://doi.org/10.1017/S001675680600272X

38. Lorenz H., Männik P., Gee D.G., Proskurnin V.F. (2008) Geology of the Severnaya Zemlya Archipelago and the North Kara Terrane in the Russian high Arctic. Int. J. Earth Sci., 97(3), 519-547. https://doi.org/10.1007/s00531-007-0182-2

39. Loucks R.R., Fiorentini M.L., Henríquez G.J. (2020) New magmatic oxybarometer using trace elements in zircon. J. Petrol., 61(3), egaa034.

40. Lu Y.-J., Loucks R.R., Fiorentini M., McCuaig T.C., Evans N.J., Yang Z.-M., Hou Z.-Q., Kirkland C.L., Parra-Avila L.A., Kobussen A. (2016) Zircon compositions as a pathfinder for porphyry Cu ± Mo ± Au Deposits. Soc. Econom. Geol. Spec. Publ., 19, 329-347.

41. Mao M., Rukhlov A.S., Rowins S.M., Spence J., Coogan L.A. (2016) Apatite trace element compositions: A robust newtool for mineral exploration. Econom. Geol., 111, 1187-1222. https://doi.org/10.2113/econgeo.111.5.1187

42. Metelkin D.V., Vernikovsky V.A., Kazansky A.Y., Bogolepova O.K., Gubanov A.P. (2005) Paleozoic history of the Kara microcontinent and its relation to Siberia and Baltica: Paleomagnetism, paleogeography and tectonics. Tectonophysics, 398(3-4), 225-243. https://doi.org/10.1016/j.tecto.2005.02.008

43. Metelkin D.V., Vernikovsky V.A., Matushkin N.Y. (2015) Arctida between Rodinia and Pangea. Precambr. Res., 259, 114-129. https://doi.org/10.1016/j.precamres.2014.09.013

44. Miles A.J., Graham C.M., Hawkesworth C.J., Gillespie M.R., Hinton R.W., Bromiley G.D. (2014) Apatite: A new redox proxy for silicic magmas. Geochim. Cosmochim. Acta, 132, 101-119.

45. Müntener O., Kelemen P.B., Grove T.L. (2001) The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: An experimental study. Contrib. Mineral. Petrol., 141, 643-658. https://doi.org/10.1007/s004100100266

46. Nathwani C.L., Loader M.A., Wilkinson J.J., Buret Y., Sievwright R.H., Hollings P. (2020) Multi-stage arc magma evolution recorded by apatite in volcanic rocks. Geology, 48(4), 323-327. https://doi.org/10.1130/G46998.1

47. Pan L.C., Hu R.Z., Bi X.W., Wang Y., Yan J. (2020) Evaluating magmatic fertility of Paleo-Tethyan granitoids in eastern Tibet using apatite chemical composition and Nd isotope. Ore Geol. Rev., 127, 103757.

48. Pan L.C., Hu R.Z., Wang X.S., Bi X.W., Zhu J.J., Li C. (2016) Apatite trace element and halogen compositions as petrogenetic–metallogenic indicators: Examples from four granite plutons in the Sanjiang region, SW China. Lithos, 254, 118-130.

49. Pearce J.A., Harris N.B.W., Tindle A.G. (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol., 25, 956-983. https://doi.org/10.2113/10.1093/petrology/25.4.956

50. Pease V.L., Kuzmichev A.B., Danukalova M.K. (2014) The new Siberian Islands and evidence for the continuation of the Uralides, Arctic Russia. J. Geol. Soc., 172, 1-4. https://doi.org/10.1144/jgs2014-064

51. Pease V.L., Scott R.A. (2009) Crustal affinities in the Arctic Uralides, northern Russia: Significance of detrital zircon ages from Neoproterozoic and Palaeozoic sediments in Novaya Zemlya and Taimyr. J. Geol. Soc., 166(3), 517- 527. https://doi.org/10.1144/0016-76492008-093

52. Petrov O.V., Khanchuk A.I., Ivanov V.V., Shatov V.V., Seltmann R., Dolgopolova A.V., Alenicheva A.A., Molchanov A.V., Terekhov A.V., Leontev V.I., Belyatsky B.V., Rodionov N.V., Sergeev S.A. (2021) Porphyry indicator zircons (PIZ) and geochronology of magmatic rocks from the Malmyzh and Pony Cu-Au porphyry ore fields (Russian Far East). Ore Geol. Rev., 139, 104491.

53. Pizarro H., Campos E., Bouzari F., Rousse S., Bissig T., Gregoire M., Riquelme R. (2020) Porphyry indicator zircons (PIZs): Application to exploration of porphyry cop per deposits. Ore Geol. Rev., 126, 1-18.

54. Priyatkina N., Collins W.J., Khudoley A.K., Zastrozhnov D.A., Ershova V. B., Chamberlain K., Shatsillo A., Proskurnin V.F. (2017) The Proterozoic evolution of northern Siberian Craton margin: A comparison of U– Pb–Hf signatures from sedimentary units of the Taimyr orogenic belt and the Siberian platform. Int. Geol. Rev., 13(59), 1632-1656.

55. Richards J.P. (2011) High Sr/Y arc magmas and porphyry Cu ± Mo ± Au deposits: Just add water. Econom. Geol. Bull. Soc. Econom. Geol., 106, 1075-1081. https://doi.org/10.2113/econgeo.106.7.1075

56. Richards J., Kerrich R. (2007) Adakite-like rocks: Their diverse origins and questionable role in metallogenesis. Econom. Geol., 102(4), 537-576. https://doi.org/10.2113/gsecongeo.102.4.537

57. Seedorff E., Dilles J.H., Proffett Jr.J.M., Einaudi M.T., Zurcher L., Stavast W.J.A., Johnson D.A., Barton M.D. (2005) Porphyry deposits: Characteristics and origin of hypogene features. Econom. Geol., 100, 251-298.

58. Sillitoe R.H. (2014) Geological Criteria for Porphyry Copper Exploration. Acta Geol. Sinica, 88(supp. 2), 597-598.

59. Sillitoe R.H. (2010) Porphyry Copper Systems. Econom. Geol., 105, 3-41.

60. Stokes T.N., Bromiley G.D., Potts N.J., Saunders K.E., Miles A.J., EIMF (2019) The effect of melt composition and oxygen fugacity on manganese partitioning between apatite and silicate melt. Chem. Geol., 506, 162-174. https://doi.org/10.1016/j.chemgeo.2018.12.015

61. Sun S.J., Yang X.Y., Wang G.J., Sun W.D., Zhang H., Li C.Y., Ding X. (2019) In situ elemental and Sr-O isotopic studies on apatite from the Xu-Huai intrusion at the southern margin of the North China Craton: Implications for petrogenesis and metallogeny. Chem. Geol., 510, 200-214.

62. Sun S.S., McDonough W.F. (1989) Chemical and isotopic systematics of ocean basalts: Implications for mantle composition and processes, in Magmatism in the Ocean Basins. Geol. Soc. Lond. Spec. Publ., 42, 313-345. https://doi.org/10.2113/10.1144/GSL.SP.1989.042.01.19

63. Sun W., Huang R., Li H., Hu Y., Zhang C., Sun S., Zhang L., Ding X., Li C., Zartman R.E., Ling M. (2015) Porphyry deposits and oxidized magmas. Ore Geol. Rev., 65(1), 97-131.

64. Vernikovsky V.A., Pease V.L., Vernikovskaya A.E., Romanov A.P., Gee D.G., Travin A.V. (2003). First report of early Triassic A-type granite and syenite intrusions from Taimyr: Product of the northern Eurasian superplume? Lithos, 66(1-2), 23-36. https://doi.org/10.1016/S0024-4937(02)00192-5

65. Vernikovsky V.A., Vernikovskaya A.E., Pease V.L., Gee D.G. (2005) Neoproterozoic Orogeny along the margins of Siberia. Geol. Soc. Lond. Mem., 30, 233-248. https://doi.org/10.1144/GSL.MEM.2004.030.01.18

66. Vernikovsky V.A., Vernikovskaya A.E., Proskurnin V.F., Matushkin N.Y., Proskurnina M.A., Kadilnikov P., Larionov A.N., Travin A.V. (2020). Late paleozoic–early mesozoic granite magmatism on the arctic margin of the siberian craton during the kara-siberia oblique collision and plume events. Minerals, 10(6), 571. https://doi.org/10.3390/min10060571

67. Wang H., Cai K., Sun M., Xia X.-P., Lai C.-K., Li P., Wan B., Zhang Zh. (2022) Apatite as a magma redox indicator and its application in metallogenic research. Lithos, 422-423, 106749. https://doi.org/10.1016/j.lithos.2022.106749

68. Watson E.B., Wark D.A., Thomas J.B. (2006) Crystallization thermometers for zircon and rutile. Contrib. Mineral. Petrol., 151, 413-433.

69. Zafar T., Rehman H.U., Mahar M.A., Alam M., Oyebamiji A., Rehman S.U., Leng C.B. (2020) A critical review on petrogenetic, metallogenic and geodynamic implications of granitic rocks exposed in north and east China: New insights from apatite geochemistry. J. Geodynam., 136, 101723.

70. Zhong S., Feng C., Seltmann R., Li D., Qu H. (2018) Can magmatic zircon be distinguished from hydrothermal zircon by trace element composition? The effect of mineral inclusions on zircon trace element composition. Lithos, 314-315, 646-657.


Рецензия

Для цитирования:


Берзин C.В., Петров С.В., Конопелько Д.Л., Курапов М.Ю., Головина Т.А., Черненко Н.Я., Червяковский В.С. Использование состава циркона и апатита при прогнозировании Cu-Mo-Au-порфирового оруденения в Пекинском и Тессемском массивах Таймыро-Североземельской складчатой области. Литосфера. 2024;24(3):547-565. https://doi.org/10.24930/2500-302X-2024-24-3-547-565

For citation:


Berzin S.V., Petrov S.V., Konopelko D.L., Kurapov M.Yu., Golovina T.A., Chernenko N.Ya., Chervyakovskiy V.S. Utilizing compositions of zircon and apatite for prospecting of Cu-Mo-Auporphyry mineralization in the Pekinsky and Tessemsky granitoid massifs of the Taimyr-Severozemelskaya folded area. LITHOSPHERE (Russia). 2024;24(3):547-565. (In Russ.) https://doi.org/10.24930/2500-302X-2024-24-3-547-565

Просмотров: 251


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1681-9004 (Print)
ISSN 2500-302X (Online)